Slicing Up Global Value Chains

Marcel Timmera Abdul Erumbana Bart Losa
Robert Stehrerb Gaaitzen de Vriesa

(a) Groningen Growth and Development Centre, University of Groningen
(b) The Vienna Institute for International Economic Studies (WIIW)

3rd World KLEMS meeting, RIETI, Tokyo May 19-20, 2014

\textit{The World input-output database (WIOD) project was funded by the European Commission, Research Directorate General as part of the 7th Framework Programme, Theme 8: Socio-Economic Sciences and Humanities. Grant Agreement no: 225 281}
Aims of this study

- International production fragmentation (IPF): unbundling of production processes into “tasks” which are carried out in different countries.

- IPF has a long history (Feenstra 1998), but accelerated since the mid 1990s with global labour supply shock due to opening up of China and India.

- Aim of this explorative study to measure:
 - the trends in IPF for global production of manufacturing goods
 - patterns of factor income distributions within vertically integrated production (denoted by “global value chains”)

Main findings

- Basically an accounting exercise to provide stylised facts that can serve as starting point for deeper analysis of causes and consequences of IPF.

- We find four trends in global production of manufactures since 1995:
 1. International production fragmentation has increased rapidly
 2. Globally, increasing shares of value added by capital and high-skilled workers, and declining shares for low-skilled workers.
 3. Advanced countries specialise in high-skilled activities.
 4. Capital shares in emerging countries are increasing.
Stylized Global Value Chain (GVC) of a car

Country 1: Capital and labour → Metal

Country 2: Capital and labour → Plastic → Car body

Country 3: Capital and labour → Business services → CAR

Engine
Factor content of a global value chain: graphical representation

Production process of a good

Country 1
- Capital and labour
- Intermediate goods

Country 2
- Capital and labour
- Domestic intermediate goods
- Intermediate goods

Country 3
- Capital and labour
- Domestic intermediate goods
- Final goods for domestic and foreign demand

Value of good

Foreign value added
- VA by L1
- VA by K1
- VA by L2
- VA by K2
- VA by L3
- VA by K3

Domestic value added
Decomposition method

A set of $F(k,h)(x,c)$ can be found by:

$$F = R(I-Z)^{-1}Y \quad (2)$$

Y matrix of final output of all products (i,j);
$F(k,h)(i,j) = \text{quantity of production factor } k \text{ located in country } h, \text{ used in production of product } (i,j)$

Z the matrix of intermediate input use of all products per unit of output for each product;
I is identity matrix and $(I-Z)^{-1}$ is the Leontief inverse ($= 1+Z+Z^2+Z^3+\ldots$);
R a matrix with direct factor requirements per unit of gross output of (x,c) with elements $[P(k,c)F(k,c)(x,c)] / [P(x,c)(Y(x,c)+Z(x,c))]$

(NB All matrices of the appropriate dimensions with elements in values)
Two new measures

1. The foreign value added share (FVAS) in a final product \((x,c)\)

\[
\text{FVAS}(x,c) = 1 - \sum_k P(k,c)F(k,c)(x,c) / P(x,c)Y(x,c)
\]

This is an indicator of international production fragmentation

2. Factor \(k\) cost shares in vertical integrated production a final product \((x,c)\)

\[
\text{FCS}(k,x,c) = \sum_j P(k,j)F(k,j)(x,c) / P(x,c)Y(x,c)
\]

These indicate the factor content of production of the product
Related literature

- Our method is based on Leontief’s (1936) input-output decomposition technique, applied to a new industry-level database of global input-output transactions: World Input-Output Database (WIOD)

- Variations of this approach are also used in literature on
 - *Value added content of exports*: Koopman, Wei and Zhang (2014, AER) and Bems, Johnson and Yi (2011, AER)
 - *Factor content of trade*: Reimer (2006, JIE) and Trefler and Zhu (2010, JIE)

- (Methods related to ecological footprinting, and alternatives such as CO2 and endangered species (Manfred Lenzen, Nature 2013))
Method and Data

- **Method**: Input-output analysis (Miller and Blair, 2009)

- **Data**: World Input-Output Tables representing flows of goods and services across industries and countries, for 1995-2011 (www.wiod.org), based on:
 - Times-series of input-output tables benchmarked to national accounts
 - Bilateral trade classified by end-use
 - Capital and workers by three types of educational attainment levels

- Global value chain analysis done for **560 manufacturing products** (14 product groups times 40 countries-of-completion)
World Input-Output Table (WIOT) represents flows of goods and services across industries and countries (40 countries and rest-of-the-world region), 1995-2008. Two data challenges in construction:

1. Times-series of input-output tables.
 - Based on harmonised official benchmark national supply and use tables (34 industries and 59 product groups)
 - Adjusted to, and interpolated with, industry output and main final demand time series from the National Accounts (RAS-like method)

2. Allocation of imports to three use categories
 - using improved BEC-classification (based on COMTRADE HS 6-digit level) rather than standard proportionality assumption (Feenstra and Jensen, 2012)
 - Breakdown of imports by country of origin, using bilateral trade statistics on goods and services (export shares by mirroring imports)
DATA: factor incomes by industry-country

- **Wages and quantities of labour** by skill type
 - Number of workers (incl. self-employed) by three skill types based on levels of educational attainment (ISCED classification)
 - Wages reflect total costs for employer, including imputed wage for self-employed workers (Gollin, JPE, 2002)
 - For advanced countries data taken from EU KLEMS database (see O’Mahony and Timmer, 2009)
 - Other countries: similar methodology based on country-specific labour force surveys and additional materials (Erumban et al., 2011)

- **Capital income** is defined as residual such that the accounting identity will hold:
 - capital income = value added minus labour compensation.
 - It reflects income to all capital assets, including intangibles
Factor content of a global value chain: graphical representation

Country 1
- Capital and labour
 - Intermediate goods

Country 2
- Capital and labour
 - Intermediate goods
 - Domestic intermediate goods

Country 3
- Capital and labour
 - Intermediate goods
 - Domestic intermediate goods
 - Final goods for domestic and foreign demand

Foreign value added

Domestic value added
Increasing fragmentation between 1995 and 2008

Foreign value added share in final output of each of 14 manufacturing industries in 40 countries

Solid line is OLS with significant slope of 1.20.

NB Output is at basic (ex-factory gate) prices
Factor content of a global value chain: graphical representation

Country 1
- Capital and labour
- Intermediate goods

Country 2
- Capital and labour
- Intermediate goods
- Domestic intermediate goods

Country 3
- Capital and labour
- Intermediate goods
- Domestic intermediate goods
- Final goods for domestic and foreign demand

VA by L1
VA by K1
VA by L2
VA by K2
VA by L3
VA by K3
Factor shares in value added of 560 global value chains of manufactures
FACT 2 Increasing value added by capital and high-skilled labor, globally

Note: The graph shows value added by factors as share of global final manufactures output.
Increasing income share (%) for capital and high-edu workers: at global level (all 560 GVCs), 1995-2008

Note: Percentage change in factor income shares in 560 global value chains of manufactures, by region. Source: Timmer et al. (2014, Table 3)
both in rich and poor countries!

Note: Percentage change in factor income shares in 560 global value chains of manufactures, by region. Source: Timmer et al. (2014, Table 3)
Possible determinants of factor value added shares

From production theory: change in cost shares can be explained by:

- changes in factor prices,
- substitution elasticities across all factors in all countries and
- factor-biased technical change

Some loose suggestions:

- Declining costs of international fragmentation has increased substitution possibilities of low-skilled labour across countries
- Prices of natural resources increased + limited substitution possibilities
- Declining ICT prices + complementarity of ICT and high skills
- Expansion of demand for final products with large fixed capital costs (e.g. brand names or software system) in imperfect sales markets
Concluding remarks

- This paper proposed a new method to identify and analyse the factor content of vertically integrated production at a macro-economic level.

- Based on the new world input-output database (WIOD) we found three trends in GVCs of manufactures:
 1. International production fragmentation has increased rapidly
 2. Globally, increasing shares of value added by capital and high-skilled workers, and declining shares for low-skilled workers.
 3. Advanced countries specialise in high-skilled activities.
 4. Capital shares in emerging countries are increasing.
More information

- For more information, see accompanying WIOD working papers “Fragmentation, Income and Jobs” and “Slicing up Global Value Chains” (downloadable from wiod website).

- **WIOD database**
 - Is publicly available at www.wiod.org
 - Offers many more opportunities for analysis, e.g. also includes environmental accounts
 - Is a proto-type database as many statistical challenges remain and will need coordinated international effort to bring forward as now put forward by e.g. OECD/WTO Trade in value added project.
Background studies

Additional material
A stylized world input-output table

<table>
<thead>
<tr>
<th></th>
<th>Intermediate use</th>
<th>Final use</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(S columns per country)</td>
<td>(C columns per country)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>...</td>
<td>N</td>
</tr>
<tr>
<td>S Industries, country 1</td>
<td>Z¹¹</td>
<td>Z¹</td>
<td>Z¹ᴺ</td>
</tr>
<tr>
<td>...</td>
<td>Z¹</td>
<td>Z¹</td>
<td>Z¹</td>
</tr>
<tr>
<td>S Industries, country N</td>
<td>Zᴺ¹</td>
<td>Zᴺ</td>
<td>Zᴺ</td>
</tr>
<tr>
<td>Value added</td>
<td>(w¹)¹</td>
<td>(w²)¹</td>
<td>(wᴺ)¹</td>
</tr>
<tr>
<td>Output</td>
<td>(x¹)¹</td>
<td>(x²)¹</td>
<td>(xᴺ)¹</td>
</tr>
</tbody>
</table>