Why is productivity slowing down?

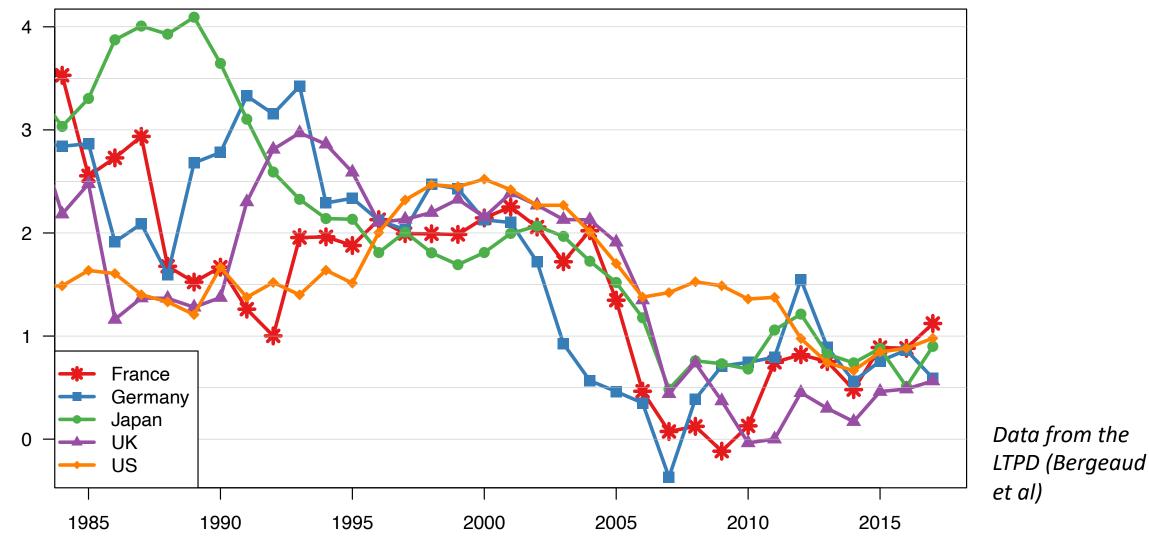
François Lafond

with Ian Goldin, Pantelis Koutroumpis and Julian Winkler

VERSITY O

OXFORD

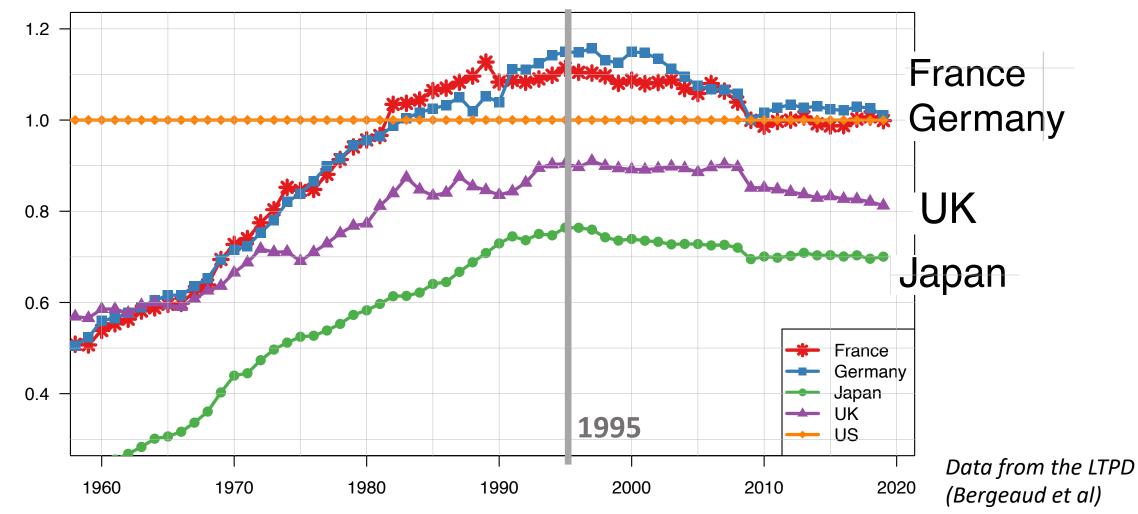
Mathematical Institute


Is productivity really slowing down?

	LP gr	LP growth		GDP per	"Missing" GDP
	1996-2005	2006-2017	Slowdown	capita 2017	per capita
France	1.65	0.66	0.99	€30,512	€3,836
Germany	1.85	0.91	0.94	€35,217	€4,203
Japan	1.68	0.85	0.82	¥4,155,243	¥356,944
United Kingdom	2.21	0.45	1.75	£27,487	£6,443
United States	2.62	1	1.61	\$59,015	\$12,610

Table 1: Labor Productivity (LP) slowdown and per capita GDP gap. Growth of labor productivity is per hour worked, and GDP per capita is in 2017 national currency units, using data from EU-KLEMS 2019 (Stehrer et al. 2019) and the Conference Board. The periods for Japan (1995-2015) and the US (1998-2017) are slightly different due to data coverage, see Appendix A.1 for details.

Is productivity really slowing down?


Is this a new phenomenon? Yes.

	1891-	1911-	1931-	1951-	1971-	1991-	2006-
	1910	1930	1950	1970	1990	2005	2018
France	1.21	3.39	0.78	5.36	3.33	1.89	0.68
Germany	1.75	0.73	0.02	5.82	3.21	2.27	0.70
Japan	2.16	2.69	1.07	7.32	3.87	2.03	0.71
UK	0.74	1.46	1.16	3.46	2.48	2.43	0.47
US	1.43	2.78	3.22	2.48	1.34	2.05	1.06

Table 13: Average growth rates of labor productivity (\$US 2010 PPP per hour worked), for several long periods. Data from the Long-Term Productivity Database (Bergeaud et al. 2016).

For non-US countries, is this just due to the end of convergence? No.

Labor productivity relative to the US

			$\Delta \log y_t$	$\Delta \log A_t$	$(1-\alpha_t)\Delta\log k_t$	$\alpha_t \Delta \log h_t$
		1996-2005	1.65	1.18	0.16	0.30
Growth	France	2006-2017	0.66	0.17	0.09	0.40
	гтипсе	Slowdown	0.99	1.01	0.07	-0.09
accounting		Share	1.00	1.02	0.07	-0.10
		1996-2005	1.85	1.10	0.61	0.15
	Commann	2006-2017	0.91	0.87	0.07	-0.03
y = Y/L : Real output	Germany	Slowdown	0.94	0.23	0.54	0.17
per hour		Share	1.00	0.24	0.57	0.18
		1995-2005	1.68	0.29	1.07	0.33
A : TFP	Ianau	2006-2015	0.85	0.31	0.26	0.28
A.IFF	Japan	Slowdown	0.82	-0.02	0.80	0.04
		Share	1.00	-0.03	0.98	0.05
k = K/L : Capital		1996-2005	2.21	1.14	0.70	0.37
(services) per hour	United	2006-2017	0.45	0.30	0.18	-0.02
	Kingdom	Slowdown	1.75	0.84	0.53	0.39
		Share	1.00	0.48	0.30	0.22
h : Index of		1998-2005	2.62	1.37	1.09	0.16
composition of the	United	2006-2017	1.00	0.46	0.38	0.17
labor force	States	Slowdown	1.61	0.91	0.71	-0.01
		Share	1.00	0.57	0.44	-0.00

Growth accounting

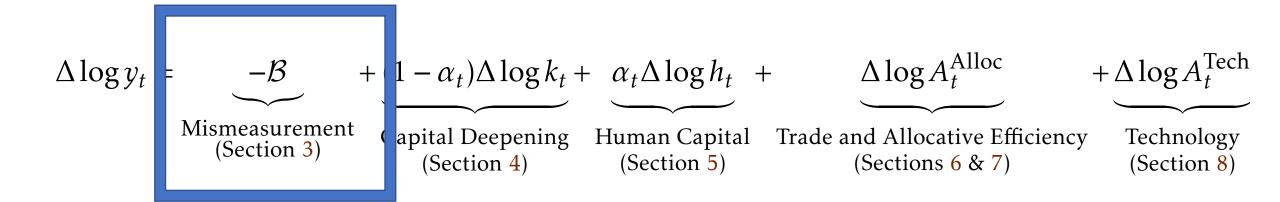

Total United Kingdom	Manufacturing	Wholesale, Retail and Repair	Financial and Insurance Activities	Information and Communication	Other	Reallocation
1996-2005 2.24	0.51	0.16	0.37	0.32	0.64	0.25
2006-2016 0.42	0.12	0.20	0.01	0.07	-0.28	0.29
Slowdown 1.82	0.38	-0.04	0.35	0.25	0.92	-0.05
Share 1.00	0.21	-0.02	0.19	0.14	0.51	-0.02
United States						
1998-2005 2.54	0.96	0.55	0.29	0.50	0.40	-0.16
2006-2017 0.92	0.20	0.11	0.04	0.45	0.31	-0.19
Slowdown 1.61	0.76	0.43	0.26	0.05	0.09	0.02
Share 1.00	0.47	0.27	0.16	0.03	0.06	0.01

Table 3: Industry decomposition for the slowdown in labor productivity growth pre- and post-2005. Data from the EU-KLEMS 2019.

What makes a good explanation?

- Sequencing: Candidate cause takes place before the slowdown
- Scope: Candidate cause takes in all places where there is a slowdown
- Scale: Cause should have a plausibly large effect

$$\Delta \log y_t = \underbrace{-\mathcal{B}}_{\substack{\text{Mismeasurement}\\(\text{Section 3})}} + \underbrace{(1 - \alpha_t)\Delta \log k_t}_{\text{Capital Deepening}} + \underbrace{\alpha_t\Delta \log h_t}_{(\text{Section 4})} + \underbrace{\Delta \log A_t^{\text{Alloc}}}_{\substack{\text{Mismeasurement}\\(\text{Section 3})}} + \underbrace{\Delta \log A_t^{\text{Lech}}}_{\substack{\text{Mismeasurement}\\(\text{Section 4})}} + \underbrace{\Delta \log A_t^{\text{Lech}}}_{\substack{\text{Mismeasurement}\\(\text{Section 5})}} + \underbrace{\Delta \log A_t^{\text{Lech}}}_{\substack{\text{Mismeasurement}\\(\text{Section 6 & 7})}} + \underbrace{\Delta \log A_t^{\text{Lech}}}_{\substack{\text{Mismeasurement}\\(\text{Section 8})}} + \underbrace{\Delta \log A_t^{\text{Mismeasurement}}}_{\substack{\text{Mismeasurement}\\(\text{Section 8})}} + \underbrace{\Delta \log A_t^{\text{M$$

Mismeasurement

$$\Delta \log y = \Delta \log \overline{Y} - \Delta \log P - \Delta \log L$$

Boundary issues Issues with deflators Mismeasured labor inputs

Around 2010 Slowdown Around 2000 Deflators Consumption 22 42 20 Investment 23 16 -7 Imputation for new products 63 70 7 Offshoring bias -5.0 -2.5 2.5 Total Deflators 103 125 22 Boundaries Profit shifting 5 -5 0 Intangibles -9 -5 4 **Total Boundaries** -5 -1 -4 99 120 Total 21

Groshen et al. (2017) Lebow & Rudd (2003) Byrne & Corrado (2020), Aghion et al. (2019) Reinsdorf & Yuskavage (2018)

Guvenen et al. (2021) Stehrer et al. (2019)

Free goods and services? Informal economy? Environment?

$$\Delta \log y_t = \underbrace{-\mathcal{B}}_{\substack{\text{Mismeasurement}\\(\text{Section 3})}} \left\{ \underbrace{-\underbrace{(1-\alpha_t)\Delta \log k_t}_{\text{Capital Deepening}}}_{\substack{\text{Capital Deepening}\\(\text{Section 4})} + \underbrace{\alpha_t\Delta \log h_t}_{\substack{\text{Human Capital}\\(\text{Section 5})}} + \underbrace{\Delta \log A_t^{\text{Alloc}}}_{\substack{\text{Capital Deepening}\\(\text{Section 8})}} + \underbrace{\alpha_t\Delta \log h_t}_{\substack{\text{Human Capital}\\(\text{Section 5})}} + \underbrace{\Delta \log A_t^{\text{Mloc}}}_{\substack{\text{Human Capital}\\(\text{Section 8})}} + \underbrace{\Delta \log A_t^{\text{Lech}}}_{\substack{\text{Human Capital}\\(\text{Section 8})}} + \underbrace{\Delta \log A_t^{\text{Mloc}}}_{\substack{\text{Human Capital}\\(\text{Section 8})}} + \underbrace{\Delta \log A_t^{\text{Human Capital}}}_{\substack{\text{Human Capital}\\(\text{Section 8})}} + \underbrace{\Delta \log A_t^{\text{Human Capital}}_{\substack{\text{Human Capital}\\(\text{Section 8})}}} + \underbrace{\Delta \log A_t^{\text{Human Capital}}_{\substack{\text{Human Capital}\\(\text{Section 8})}} + \underbrace{\Delta \log A_t^{\text{Human Capital}}_{\substack{\text{Huma$$

			$(1 - \alpha_t) \Delta \log k_t$	Non-ICT	ICT	Intangible
		1996-2005	0.16	0.08	0.03	0.06
Capital	D	2006-2017	0.09	0.00	0.02	0.07
	France	Slowdown	0.07	0.08	0.01	-0.02
Deepening		Share	1.00	1.14	0.13	-0.27
		1996-2005	0.61	0.49	0.03	0.08
		2006-2017	0.07	0.02	-0.01	0.07
Physical ICT	Germany	Slowdown	0.54	0.48	0.05	0.02
Computing equipment	_	Share	1.00	0.88	0.08	0.04
Communications equipment		1995-2005	1.07	0.44	0.34	0.29
	Japan	2006-2015	0.26	0.06	0.07	0.13
Included Intangible		Slowdown	0.80	0.38	0.27	0.16
Research and Development		Share	1.00	0.47	0.33	0.20
Computer software and databases		1996-2005	0.70	0.55	0.12	0.03
ther Intellectual Property Products	United	2006-2017	0.18	0.17	0.03	-0.02
thei intencetual i toperty i touuets	Kingdom	Slowdown	0.53	0.38	0.09	0.05
		Share	1.00	0.73	0.18	0.10
		1998-2005	1.09	0.63	0.24	0.21
	United	2006-2017	0.38	0.18	0.07	0.12
	States	Slowdown	0.71	0.45	0.17	0.09
		Share	1.00	0.64	0.23	0.13

Structural or cycle effects?

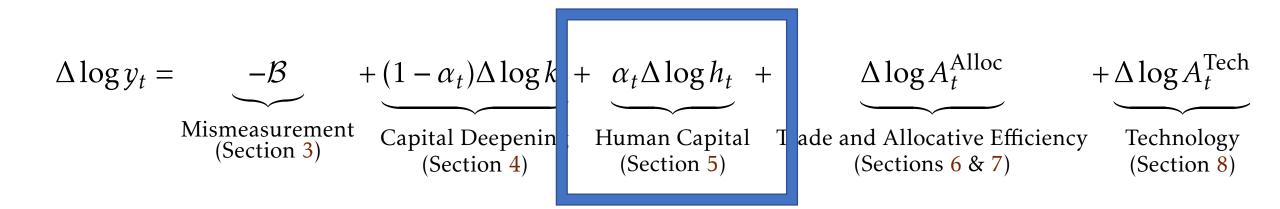
Structural effects

- Intangible capital (more next slide)
- **Competition**: market power restricts output and investment
- Corporate governance: Common ownership; short-termism
- Globalization: investment shifts abroad

Business cycles and the financial crisis

- Financial frictions
- Depressed aggregate **demand** (through accelerator effect)
- Lower government investment

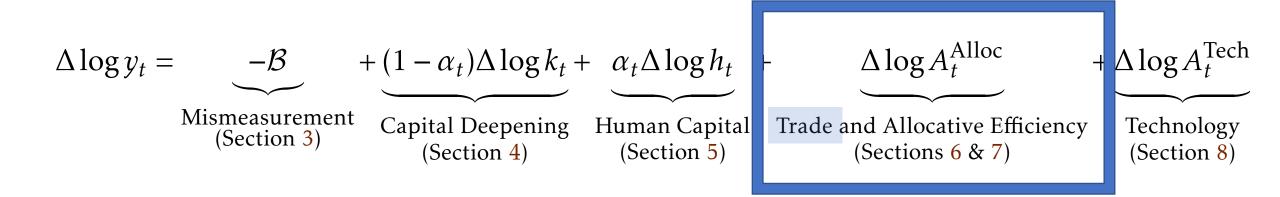
We will assume that structural and business cycle effects contribute 50-50 each


Spillovers from intangibles

Scale: Yes Sequencing: Yes

	France	Germany	Japan	UK	US
1996-2005	2.53	2.62	3.30	1.83	4.27
2006-2017	2.88	2.31	0.90	1.85	2.89
Slowdown	-0.36	0.31	2.40	-0.03	1.38
Slowdown ×0.2	-0.07	0.06	0.48	-0.01	0.28

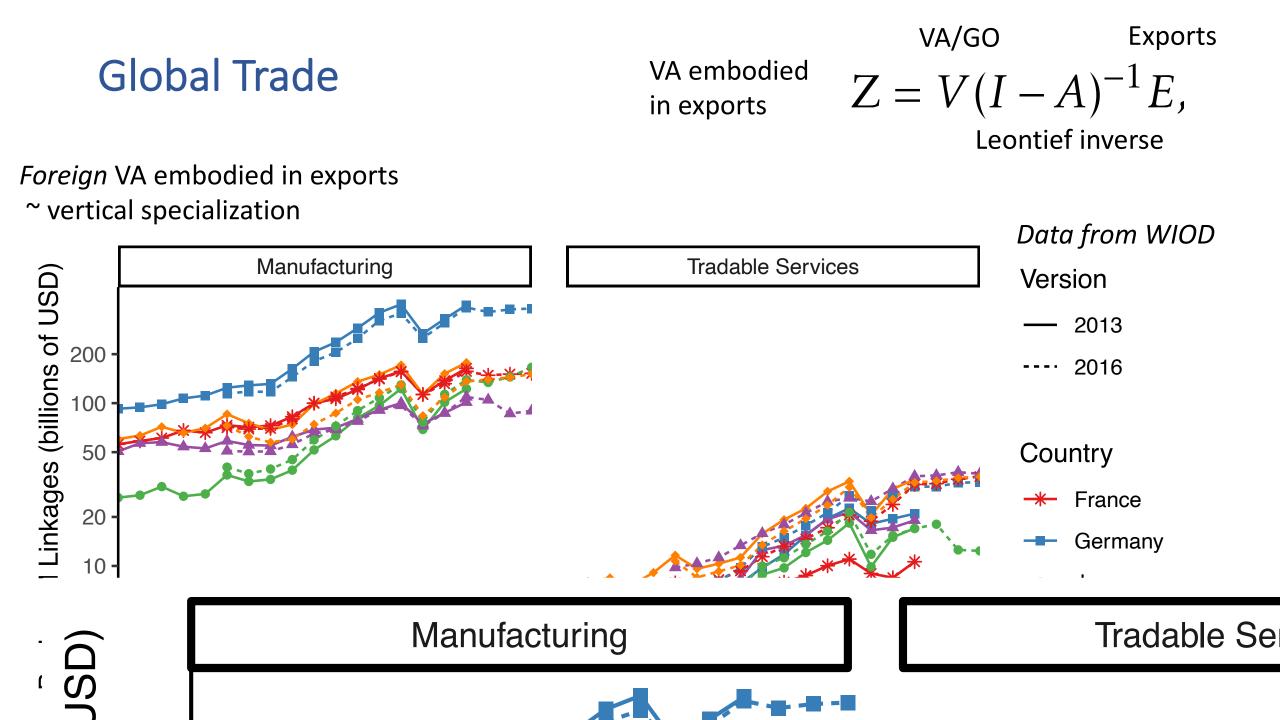
Data from EUKLEMS


Scope: No

Human Capital

- Education and skills: no strong evidence of a slowdown
- Aging: no clear evidence of *direct* effect on productivity ; sequencing?
- Migration: difficult to quantify, heterogenous effects; scope?
- Leisure technology: difficult to quantify; but good sequencing.
- Labor market institutions:
 - No-poaching and non-compete agreements
 - Low wages make investment less attractive
 - Gig economy
 - Slower rate of reduction in discrimination

Conclusion: Mix of secular trends and recent changes have probably affected TFP, but we are unable to quantify this further

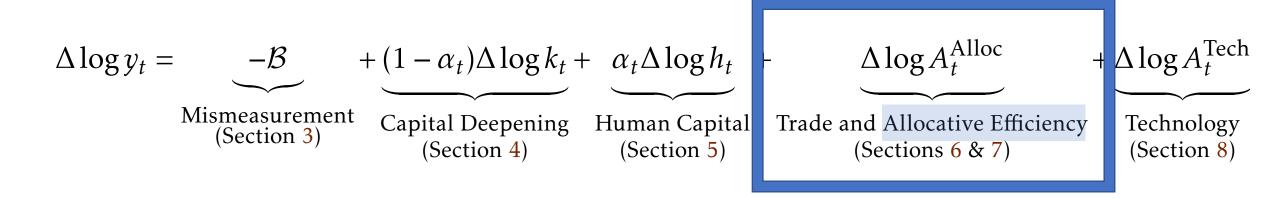

Global trade: Lower gains in world allocative efficiency?

Why would trade be good for productivity?

- Specialization (level effect)
- Firm-level selection (level effect)
- Innovation (growth effect)

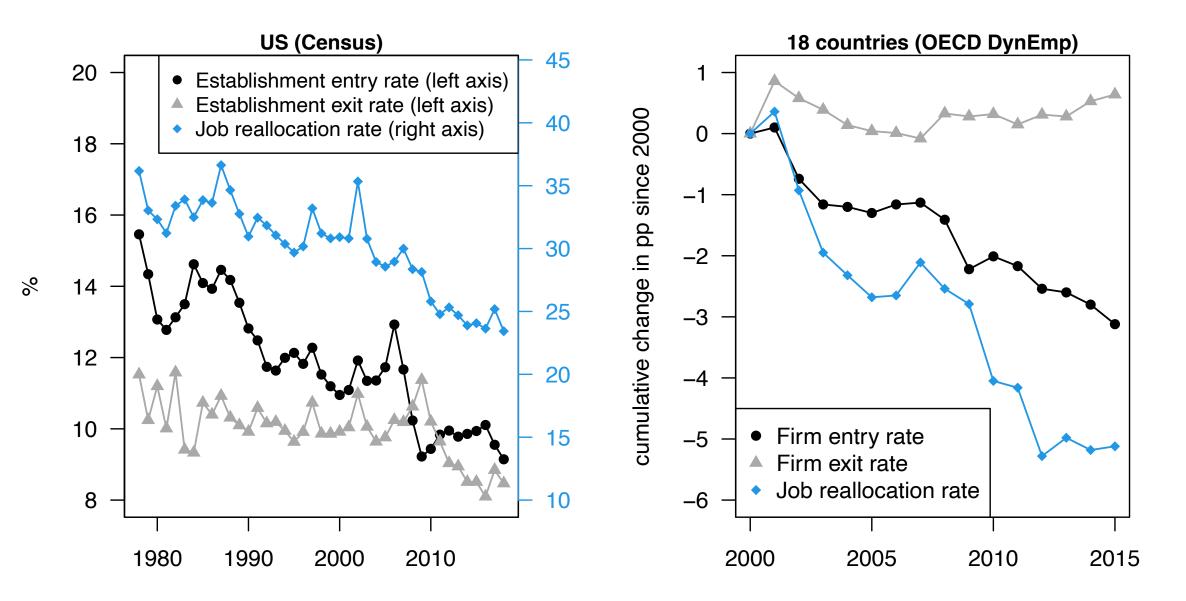
Has Trade integration slowed down and why?

- Business cycle effect: Slowdown in global trade post financial crisis
- Structural effects: Large trade gains from GVC organization already reaped?


Global Trade

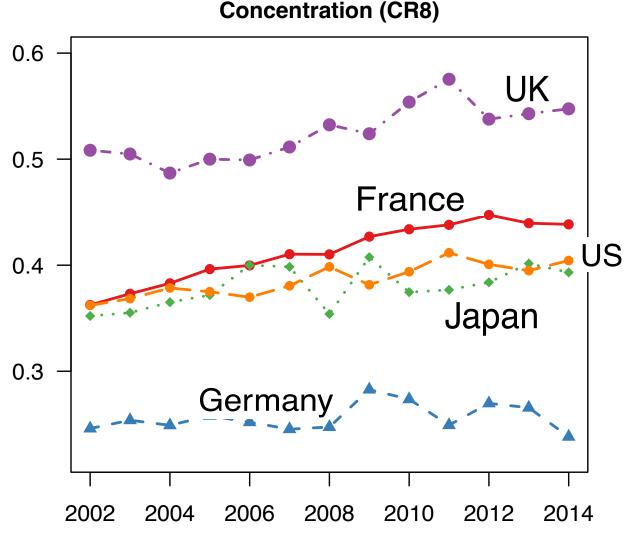
$$\Delta \log y_{i,j,t}^E = \beta^{\text{GVC}} \Delta \log B_{i,j,t}.$$

Constantinescu et al (2017):


Foreign VA embodied in exports is correlated to output/worker at the industry-level

	Indus.	Backward linkages		Elasticity	Productivity effect		Slowdown
	maus.	1996-05	2006-14	β^{GVC}	1996-05	2006-14	- 510wu0wii
France	М	0.89	0.72	0.03	0.03	0.02	0.01
1141100	M&S	3.87	3.90	0.24	0.95	0.96	-0.01
	Μ	2.15	1.58	0.03	0.07	0.05	0.02
Germany	M&S	7.39	5.00	0.24	1.81	1.23	0.58
Ianau	Μ	1.53	1.76	0.03	0.05	0.06	-0.01
Japan	M&S	6.50	2.24	0.24	1.59	0.55	1.04
United	М	0.48	0.29	0.03	0.02	0.01	0.01
Kingdom	M&S	7.85	4.09	0.24	1.92	1.00	0.92
United	Μ	0.77	0.78	0.03	0.03	0.03	-0.00
States	M&S	5.32	4.25	0.24	1.30	1.04	0.26

- Business dynamism and job reallocation
- Market power: Concentration, profits and markups
- Productivity dispersion

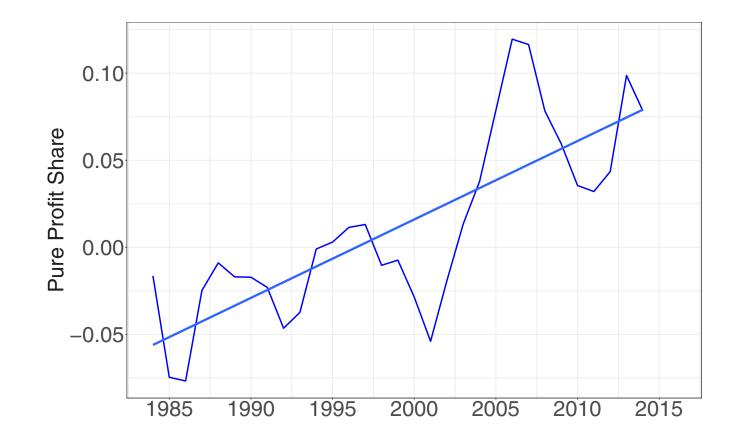

Business dynamism and job reallocation

Market power 1: Concentration

Markups

- Issuesahemeasuring United Kingdom
 - Market definition United States
 - (especially geographic)
 - Denominator when using firm-level datasets
- Issues in *interpreting*: Good or bad?
 Natural monopolies
 Barriers to entry

Orbis data, computations from the OECD


Market power 2: Profits

Factorless income =

Y - wL - rK

 $rK = \sum_{j} r_{j}K_{j}$

- Missing capitals?
- Wrong rates of return?
- (Treatment of mixed income after R&D capitalization)

Barkai (2020), Declining Capital and Labor shares, Journal of Finance

Market power 3: Markups

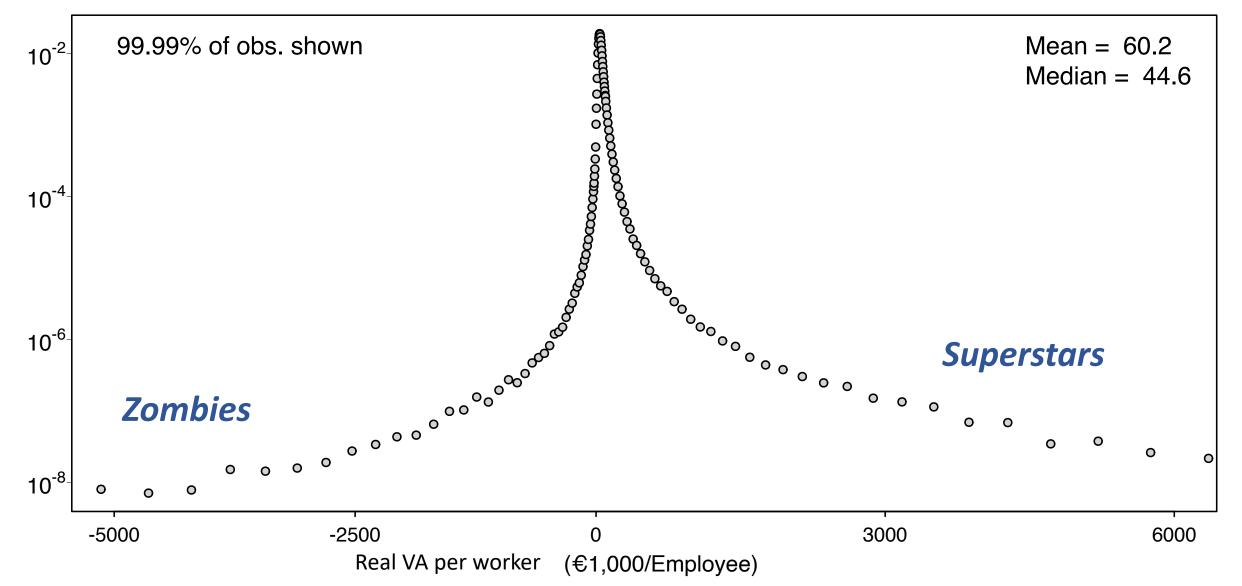
$$\mu(1-\pi)=\gamma$$


markups

economies of scale

What costs are fixed vs variable?

Aggregate markups have increased because:


- High markups firms are getting bigger
- High markups firms are increasing their markups

Data from DeLoecker & Eekhout (2022)

Productivity dispersion

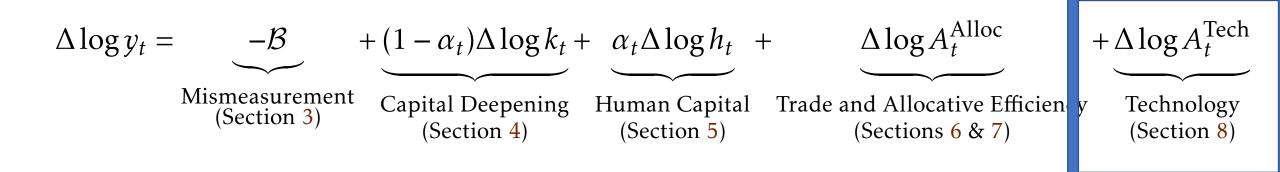
French firms from Orbis, pooled across years. From Yang et al (2022), Measuring productivity dispersion using the Lévy stable distribution

Contribution to the slowdown

Baqaee & Fahri (2020): Allocative Efficiency contributed about half of TFP growth. So, did it contribute half of the *slowdown*? Almost.

$$\Delta \log Y_t - \tilde{\Lambda}_{t-1}' \Delta \log \mathcal{L}_t$$

 Δ Markup-corrected Solow residual


$$\approx \tilde{\lambda}_{t-1}^{\prime} \Delta \log \mathcal{A}_t$$

 Δ Technology

$$-\tilde{\lambda}_{t-1}^{\prime}\Delta\log\mu_{t}-\tilde{\Lambda}_{t-1}^{\prime}\Delta\log\Lambda$$

 Δ Allocative Efficiency

r							
	Distorted TFP	Alloc	ative Efficiency	Technology			
		User cost of capital					
1997-2005	1.44		0.75	0.69			
2006-2014	0.33		0.09	0.24			
Slowdown	1.11		0.66	0.44			
Share of slowdown	100 %		60 %	40~%			
	Production Function						
1997-2005	2.14		0.63	1.51			
2006-2014	0.58		0.22	0.37			
Slowdown	1.56		0.41	1.15			
Share of slowdown	$100 \ \%$		26 %	74~%			
		Ассои	inting profits				
1997-2005	1.74		0.37	1.37			
2006-2014	0.44		0.32	0.12			
Slowdown	1.30		0.06	1.24			
Share of slowdown	100 %		4 %	96 %			

- Business dynamism and job reallocation
- Market power: Concentration, profits and markups
- Productivity dispersion

Technology: pessimists vs optimists

Overall R&D effort does not appear to have slowed down massively,

- But it is more focused on **medical sciences**
- And originates more from the **corporate sector**

Research productivity:

- Theory: Fishing out from higher shoulders vs combinatorial explosion
- Data: Increasing number of scientists to achieve constant rate of progress

Lags in diffusion of the new GPT

- Theory based on history is compelling: Complementary investment (from firms and government) take time
- But data shows differences with previous periods: Business dynamism and investment rates are low

Conclusion 1: US

	US (pp)	US, % of	Range, % of
		slowdown	slowdown
Total slowdown	1.61	100	
Capital: Financial crisis	0.35	22	[11,33] ¹
Capital: Secular trends	0.35	22	[11,33] ¹
Labor composition	-0.01	0	$[-10,22]^2$
TFP: Mismeasurement	0.21	13	$[0,25]^3$
TFP: Spillovers from intangibles	0.28	17	$[0,25]^4$
TFP: Trade	0.13	8	[0,16] ⁵
TFP: Allocative efficiency	0.38	23	[3,41] ⁶
Total 'explained'	1.7	105	[15,195] ⁷

Conclusion 2: All countries

	France	Germany	Japan	UK	US
Capital: Financial crisis ¹	0.04	0.27	0.40	0.26	0.35
Capital: Secular trends ¹	0.04	0.27	0.40	0.26	0.35
Labor composition ¹	-0.09	0.17	0.04	0.39	-0.01
TFP: Mismeasurement ²	0.21	0.21	0.21	0.21	0.21
TFP: Spillovers from intangibles ³	-0.07	0.06	0.48	-0.01	0.28
TFP: Trade ⁴	-0.00	0.30	0.52	0.46	0.13
TFP: Allocative efficiency ⁵	0.42	0.09	-0.01	0.35	0.38
TFP, to explain ¹	1.01	0.23	-0.02	0.84	0.91
TFP 'explained'	0.56	0.67	1.20	1.02	1.00
Total slowdown	0.99	0.94	0.82	1.75	1.61
Total 'explained'	0.54	1.38	2.05	1.93	1.70

Ian Goldin Pantelis Koutroumpis Julian Winkler

francois.lafond [[©]] inet.ox.ac.uk

Institute for New Economic Thinking AT THE OXFORD MARTIN SCHOOL