Evaluation of R&D subsidies in the case of industry-specific technology stocks with spillovers

Dirk Verwerft

plan.be

Introduction

Objective: design R&D wage subsidization scheme taking knowledge spillovers between industries into account

Network perspective: industry-specific stocks of knowledge - influencing one another positively and asymmetrically

Dynamic general equilibrium framework: taking into account input-output structure of production including international competitiveness; investment decisions; labour markets

Structure of the presentation

1. Knowledge spillovers

2. Model description

3. Calibration

4. Results

Literature: elasticities of "external" knowledge between 0.05 and 0.09 (Hall, Mairesse & Mohnen, 2010)

Knowledge stocks are usually highly aggregated because of multicollinearity issues

Most detailed level: Verspagen (1997), Keller (2002) 4 distinct effects: intra/inter-industry x domestic/foreign

plan.be

Liu & Ma: innovation network defined by patent citation shares -> some industries are more central than others

Derive optimal allocation of R&D resources (labour force) across industries, given the innovation network

Optimal allocation proportional to network centrality vector (= contribution of each industry's R&D to economic growth)

cited industries

Knowledge spillovers (symmetric)

DynEMItE: inspired on QUEST III R&D model (DG ECFIN - EC)

General characteristics:

- Household, *n* firms / industries, government
- Industry-specific R&D stocks with cross-industry spillovers;
 labour-augmenting tech ~ steady state growth theorem
- Balanced growth is guaranteed in the long run because of semi-endogenous growth

- 3 regions: BE, EA, RW, first two in monetary union
- Labour markets for 3 skill levels and *n* industries: interindustry wage differentials
- Monopolistic competition, both within and between sectors
 Price-cost mark-ups within industries, substitution possibilities
 between industries and regions
- Quadratic adjustment costs

Labour, wages, investment, capital utilization

Cobb Douglas production function

$$Y_{i,t} = B_{i,t} K G_t^{\alpha_{G,i}} (K_{i,t-1})^{\alpha_i (1-\sigma_i^M)} (A_{i,t-1} L_{i,t})^{(1-\alpha_i) (1-\sigma_i^M)} M_{i,t}^{\sigma_i^M}$$

Extra FOC for technology:

$$\frac{\tilde{A}_{i,t-1}}{1+\gamma_A} = \frac{(1-\alpha_i)(1-\sigma_i^M)}{rrd_{i,t}} mc_{i,t} \, \widetilde{y}_{i,t}$$

Remark 1: constant returns to scale in "traditional" inputs \Rightarrow economic sustainability condition: economic profit must be sufficient to allow rental of R&D capital (~ ½ Aghion)

Remark 2 (from labour and R&D FOCS): for reasonable values, the R&D intensity should be 50-75% of the labour income share

Solution: general technology term (unintentional knowledge)

$$\frac{\tilde{A}_{i,t-1} + \tilde{GT}_{i,t-1}}{1 + \gamma_A} = \frac{(1 - \alpha_i)(1 - \sigma_i^M)}{rrd_{i,t}} mc_{i,t} \tilde{y}_{i,t}$$

 $GT_{i,rel} \equiv \frac{GT_{i,0}}{A_{i,0}}$ is calibrated by the deviation between the labour income share and the R&D intensity

Knowledge creation process, as in QUEST, inspired by Bottazzi & Peri (2007):

*New R&D production depends on domestic and foreign stocks of capital, as well as R&D labour

$$IRD_{i,t} = v_i A_{i,t-1}^{\varphi_i} A_{ROW-i,t-1}^{\xi_i} LRD_{i,t}^{\lambda_{rd,i}}$$

But separate spillover coefficient per stock of knowledge (as in Liu & Ma, 2022):

$$IRD_{i,t} = \nu_i \prod_{j=1}^{n} A_{j,t-1}^{\varphi_{ij}} LRD_{i,t}^{\lambda_{rd,i}}$$

Semi-endogenous growth: balanced growth in the long run, but different short-term growth may affect relative technology levels between industries

6n + 9 demand components: double layer structure

Total demand per product

Figaro symmetric product x product table (64 x 64)

BE: 15% difference with official National Accounts table for investment in R&D -> insert BE domestic matrix in Figaro, reweigh BE exports and imports

Symmetric BE matrix derived from use matrix using industry technology assumption for transparency and consistency -> supply matrix

Investment: disaggregated into specific investment assets for each industry and the government

For BE: detailed data available

EA and RW: data on investment per industry and per asset (Eurostat, OECD)

Correspondence table between assets and products

Government: info on stocks of capital per asset and institutional sector; subtract from industry O, P and R

Missing data strategy:

- If economy-wide investment per product or investment per industry (A64) are not known -> "generic" country
- 2) If aggregate data is known but detailed information is missing:
 - a) Impute using a key based on data of other year
 - b) Impute using a key based on data of other countries in region -> ranking countries from complete to incomplete information

Labour market:

Employment per industry (Eurostat / OECD)

Distribution of skill levels per industry (World KLEMS)

Unemployment per industry calculated using aggregate, skillspecific unemployment rates

-> labour force

Wage income shares per skill level

Simulation

Increase wage subsidies for R&D workers by 10 ppt in 8 industries:

Industry	NACE rev. 2 codes	Description		
1	A-F (without sectors 2-6 below)	Agriculture, Mining, Low- tech manufacturing, Utilities, Construction		
2	C20-21	Chemicals, Pharmaceuticals		
3	C22	Rubber and plastics		
4	C26-27	Electronics, Electrical equipment		
5	C28	Machinery and equipment		
6	C29-30	Transport equipment		
7	G-N	Market services		
8	O-U	Non-market services		

Results

lndustr y	Share in total output	Share in total VA	Price- wage mark- up	Share of costs in total output	Interme diate share	Labour income share	Rest	Invest ment share
1	0.254	0.150	1.12	0.89	0.74	0.14	0.007	0.06
2	0.054	0.034	1.20	0.83	0.73	0.11	-0.005	0.13
3	0.008	0.005	1.11	0.90	0.72	0.19	0.000	0.06
4	0.007	0.006	1.15	0.87	0.64	0.21	0.015	0.10
5	0.011	0.008	1.20	0.84	0.65	0.20	-0.011	0.06
6	0.018	0.007	1.06	0.95	0.84	0.13	-0.023	0.04
7	0.500	0.563	1.29	0.78	0.51	0.22	0.052	0.13
8	0.149	0.227	1.10	0.91	0.33	0.57	0.003	0.04

Results

Industry	Long term change in GDP (%)	Ex post cost in % of GDP	"Bang for the buck"
1	0.67	0.0088	76.0
2	0.04	0.0168	2.6
3	0.01	0.0011	12.7
4	0.03	0.0077	4.2
5	0.03	0.0032	9.0
6	0.02	0.0027	7.3
7	1.57	0.0353	44.4

Results

h

quarter after shock

