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Abstract 
 

Growth dynamics of the developed economies experience significant variation over long 
periods. With recognition of such variation, measurement can better assess long-term growth, 
more readily adapt to structural shifts, and exploit general-purpose technology – where 
appropriate – to create new measurement capabilities. 

 
To explore the economic logic of long-term growth variation an industrial revolution 

framework is developed and provides a point-in-time reference for placing current events in the 
context of sustained, multidecade periods of faster or slower GDP and productivity growth. 
Political, social, and economic metamorphoses have accompanied each revolution. In the context 
of extended decades, industrial revolutions provide a unique frame to measure and assess global 
economic transformation with implications for public policy and business strategy. 

 
Recent measurement innovations have added intangible capital spending to tangible 

capital investment reflecting management and technology advances impacting business sectors 
and labor markets. In addition, improved income distribution data are available. However, 
innovations in measuring the value of new and free goods, the use of web-based search to 
estimate and predict economic activity, the integration of administrative and survey data, and the 
value of data remain in early stages of development.  

 
Recent advances in artificial intelligence have opened new measurement approaches. 

Nonetheless, much work remains and there are substantial challenges to be addressed. In the 
context of industrial revolution, there are behaviors whose progression is important but where 
data are either limited or non-existent. Such topics include new worker tasks, knowledge 
diffusion and absorptive capacity, transformation by enterprise size, and technology adoption. 

 
 

* Martin Fleming is Fellow, The Productivity Institute; Chief Revenue Scientist, Varicent; and former IBM Chief 
Economist and Chief Analytics Officer. 
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I. Introduction 

The growth dynamics of the developed nations experience significant variation over long 

periods. To explore the economic logic of such variation, the Fourth Industrial Revolution is a 

unique frame to assess global economic transformation. The industrial revolution framework 

provides a point-in-time reference for placing current events in the context of sustained, 

multidecade periods of faster or slower GDP and productivity growth. Political, social, and 

economic metamorphoses have accompanied each revolution. 

Industrial revolution is the economic and social transformation occurring as a result of 

the lengthy and complex interaction of capital investment and technological change, along with 

the redefinition of how work gets done and how businesses are organized. Investment in 

machinery and equipment can shift from substituting for the skill of workers to complementing 

the skill of workers and vice versa. Industrial revolution creates the need for (1) new intangible 

capital, intellectual property, and worker skills to build, use, and maintain the new technology, as 

well as (2) time to adjust to the new social norms implied by the revolutionary transformation. 

Industrial revolution is about shifting the nature of the competition for wealth among nations. 

Each industrial revolution has also brought amazing and previously inconceivable 

technology advances that drive unimagined innovation in businesses, work, and life. Industrial 

revolution brings new less expensive energy sources—from water, to steam, to coal, to oil, and 

to renewables. In each revolution, a new general-purpose technology (GPT), such as information 

technology, initially gives rise to “mushroom” growth with scattered success popping up, while 

latter “yeasty” growth takes hold (See Harberger 1998). Economic activity is leavened by 

increased capital investment, education, skills, knowledge transfer, technology diffusion, and 

labor income share. 
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The intersection of technological innovation and creative destruction is at the heart of 

industrial revolution. Schumpeter (1950) coined the term “creative destruction,” which is the 

continuous process of product and service creation, business process improvement, and business 

model innovation. Through creative destruction new, innovative capabilities replace existing 

processes that are rendered obsolete over time. The restructuring process runs through major 

aspects of macroeconomic performance, not only long-run growth but also economic 

fluctuations, structural adjustment, and the functioning of factor markets. Over the long run, 

Caballero (2010) estimates the process of creative destruction accounts for over 50 percent of 

productivity growth. 

Section II outlines the dynamics of long-term growth variation. Building on longstanding 

work of scholars as well as recent innovations, the approximate timing of four industrial 

revolutions is provided. The major underlying features of each industrial revolution are discussed 

– the investment, depreciation, and age of technology-embedded capital; the role of intangible 

capital; the pace of knowledge diffusion and, conversely, the capacity for absorption; and 

shifting income shares of capital and labor (See Fleming 2022 for a detailed discussion). 

If the Fourth Industrial Revolution is to deliver benefits similar to earlier periods, 

substantial transformation of business and work activities as well as public policies actions will 

be required. Section III provides a discussion of measurement program changes and innovation 

that might be required. There are a number of important efforts already underway, including 

greater focus and improved measurement of intangible assets and income distribution. However, 

there are other innovations still required, including data and measurement of new tasks, 

knowledge diffusion and absorptive capacity, activity by enterprise size, and technology 

adoption. Section IV concludes. 
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II. Technology, Capital, and Long-Term Growth 

In 1983, Rosenberg and Frischtak wrote: “No one who has examined the dynamics of 

capitalist economies over long historical periods can doubt that they experience significant long-

term variations in their aggregate performance” (Rosenberg and Frischtak 1983, 146). The 

interest of Rosenberg and Frischtak was to “examine the economic logic” of such variation and 

whether such long-term movement is the result of exogenous events or whether the observed 

behavior is endogenous. While much of the systemic behavior contributing to long-term 

variation in aggregate performance has an internal cause—the behavior is endogenous—a 

meaningful portion of variation develops from external factors—exogenous events. The 

challenge is to parse underlying causes between those that arise from within the system and those 

responding to external shocks. 

Rosenberg and Frischtak were seeking a “coherent explanation” for poor economic 

performance and propose four requirements that such an explanation must meet—causality, 

timing, economywide repercussions, and recurrence.1 

In contrast to Rosenberg and Frischtak, the economics literature commonly considers 

long-term aggregate performance as trend growth. Such focus is aligned with the sources of 

growth analytics that has provided deep insight in the shift in importance of factor inputs.2 Figure 

1A shows US nonresidential investment spending and its trend. As an alternative view, Figure 

1B shows US nonresidential net investment spending as a percent of the stock of nonresidential 

capital, depicting periods of variation in long-term investment spending growth. 

 
1 Rosenberg and Frischtak cite the work of four scholars—Schumpeter (1939), Freeman (1982), Kondratiev (1979), 
and Forrester (1981)—each of which they find wanting. 
2 Fernald (2015), for example, is a well-done and frequently cited reference. See also CBO (2022) 
https://www.cbo.gov/system/files/2022-07/57971-LTBO.pdf 
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Recognizing such variation is not new. For the US, Romer (1986) showed per capita 

GDP growth rates increasing steadily over five subperiods between 1800 and 1978 with 

alternating periods of faster and slower growth (see Figure 2). Maddisson (1982) argues each era 

is different and should be considered on its own merits. He recognized that while random events 

can influence outcomes, endogenous behavior is also at work. Maddisson concludes: 
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It is clear that major changes in growth momentum have occurred since 1820, and 

some explanation is needed….Major system shocks change the momentum of 

capitalist development at certain points. (Maddisson, 1982, p. 17) 

 

Harberger (1998) was among the first to recognize the distinction in the underlying 

economics between such periods, his American Economic Association presidential address cited 

complementary inputs as necessary ingredients, for example, physical infrastructure, energy 

technology, and engineering talent.3 One, with focused creative destruction is characterized as 

“mushroom” growth with “real cost reduction stemming from 1001 different causes” with a 

limited number of sectors, industries, or firms experiencing much-improved productivity. The 

second type of growth is what Harberger called “yeasty” growth “with very broad and general 

externalities, like externalities linked to the growth of the total stock of knowledge or of human 

capital, or bought about by economies of scale tied to the scale of the economy as a whole.” 

Once productivity improvement spreads widely across the economy, “yeasty” growth responds 

to the adoption of a general-purpose technology (GPT) with substantial creative destruction and 

business process transformation (see van Ark, de Vries, and Erumban 2020). 

In formalizing the work of earlier scholars, Perez (2002) uses the industrial revolution as 

a frame of reference and focuses on the issue of the timing as well as the nonlinear nature of the 

process in which modest improvement in an early period is followed by a more robust latter  

 

 
3 Rostow (1960) postulated growth occurs in five stages of varying length:  traditional society, preconditions for 
takeoff, takeoff, drive to maturity, and age of high mass-consumption. He argued that growth is initially led by a few 
industrial sectors. 
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stage in which the resolution of high uncertainty results in broad diffusion and adoption (See 

Figure 3).4  

Industrial revolutions, as defined by Perez, consist of two periods—an installation period 

and a deployment period with a major financial crisis intervening. Romer’s growth rate internals, 

as shown in Figure 2, approximately align with the Perez model. In each period, state 

dependence plays a role as perceived market and price effects anticipate future income 

opportunities. 

Like Harberger’s “mushroom” growth, the installation period is a period of 

experimentation and learning when the new technology finds early, albeit somewhat primitive, 

applications. While the new technology provides early benefits, innovation in management 

practices, business models, and new products and services lag. The installation period also 

carries the legacy of the prior era’s long-lived capital, and its embodied technology. With vast 

 
4 In the spirit of Rostow (1960) and Harberger (1998), Perez (2002) proposes each industrial revolution consists of 
five stages across two periods. 
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wealth having been created in the prior era, the inclination is to defend and grow existing 

accumulated wealth and resist fundamental transformation (see Gordon 2016 and Mokyr 1998). 

The installation period leads to a frenzy of investment in the new technology—for 

example, the 1990s dot.com bubble and mortgage securitization contribution to the 2008–2009 

financial crisis. Financial bubbles arise as investors, eager for returns, overcommit to a new 

technology that business processes are not yet prepared to exploit at scale (Janeway 2012 and 

Perez 2002). Value creation is not yet sustainable (see Minsky 1975 and Minsky 1986). On the 

one hand, existing business models and practices cannot support the fundamental change needed 

to make the new technology fully effective. On the other hand, the value creation capability of 

the legacy capital and technology of the prior era begins to fade. The frenzy of new investment 

fails to persist. 

The deployment period-like Harberger’s “yeasty” growth-is one in which the new 

technology, along with new business models, social acceptance, and political support are 

sufficiently in place to deploy, or put in place, the new capital, and its embedded, now general 

purpose, technology, at a vast scale. Investors now have a deeper understanding of the 

technology, its rate and pace of diffusion, and the extended time horizon necessary for expected 

financial return. State dependence is now such that aggregate demand grows at an increased pace 

and factor demand grows in a complementary fashion. 

Recent advances in artificial intelligence have helped to define periods of faster and 

slower growth. Kelly, Papanikolaou, Seru, and Taddy (2021) apply natural language processing 

(NLP) to data from U.S. patent documents to build indices of breakthrough innovations (See 

Figure 4). Kelly et al. define breakthrough innovations as distinct improvements in the 

technological frontier that become the foundation on which subsequent innovations are built. 
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These breakthroughs include watershed inventions such as the telegraph, the elevator, the 

typewriter, the telephone, electric light, the airplane, frozen foods, television, plastics, 

electronics, computers, and advances in modern genetics (see Gordon 2016 for detailed 

discussion). 

The resulting Kelly et al. aggregate innovation index shows three technology surges—

mid- to late-19th century, the 1920s and 1930s, and the post-1980 period. Advances in electricity 

and transportation in the 1880s; agriculture in the 1900s; chemicals and electricity in the 1920s 

and 1930s; and computers and communication in the post-1960s all contribute to high-value 

innovation. 

The innovation index is also a strong predictor of aggregate total factor productivity 

(TFP) for which a one-standard deviation increase in the index is associated with a 0.5 to 2 

percentage point higher annual productivity growth over the subsequent 5 to 10 years. By 

mapping technology to industries, sectoral technological breakthrough indexes span the entire 

sample. Sectors that have breakthrough innovations experience faster growth in productivity than 

sectors that do not. 

These breakthrough innovations are of the nature of the advances that Romer had in mind 

when suggesting that many such ideas, because they are protected by patents or as trade secrets, 

are nonrival and nonexcludable. Indeed, the Kelly et al. innovation index in Figure 4 shows 

periodic surges of very significant ideas have spread repeatedly, widely, and rapidly over nearly 

two centuries, suggesting the presence of increasing returns to scale at the industry and national 

levels. 
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As shown in Figure 4 and asserted by Perez, periodic technology and innovation surges 

have been frequently followed by major financial crises. Among the most well-known are the 

events of the 20th and early 21st century—the Great Depression of the 1930s and the Great 

Recession and Global Financial Crisis of 2007 to 2009.  Scholars, who have carefully tracked 

such events, agree that both downturns qualify as major financial crises. Aliber and Kindleberger 

(2015), Reinhart and Rogoff (2009), and Perez (2002), all identify the Great Depression and the 

Global Financial Crisis as financial crises that are among the historically largest. 

Building on the work of Minsky (1975) and Minsky (1986), Aliber and Kindleberger 

identify crises that follow an exogenous shock that sets off a mania. The mania involves a 
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specific object of speculation, such as commodities, real estate, bonds, and equities as well as a 

source of monetary expansion. Perez builds on the work of Minsky, Aliber, and Kindleberger. 

Reinhart and Rogoff (2009), famously, develop a quantitative history of financial crisis. 

Between 1800 and 2009, Reinhart and Rogoff identify 250 external sovereign debt default 

episodes, 68 domestic debt defaults, and 270 banking crises. Reinhart and Rogoff also highlight 

inflation and currency crises. However, they label four episodes as global financial crises. 

Reinhart and Rogoff define global financial crises as having four main elements: (1) a global 

financial center is involved in a systemic crisis, (2) two or more global regions are involved, (3) 

the number of countries involved in each region is three or more, and (4) the Reinhart and 

Rogoff composite GDP-weighted average global financial turbulence index is at least one 

standard deviation above average.5 In Reinhart and Rogoff’s view, such financial crises share 

three characteristics—a deep and pro-longed asset market crash, a banking crisis that is followed 

by profound declines in output and employment, and a vast expansion in the value of 

government debt. As shown in Figure 3, four such major financial crises have occurred over the 

recent two centuries. 

As measured by Reinhart and Rogoff, financial crises bring declines in real housing 

prices averaging 35 percent, a three-and-a-half-year equity price decline averaging 56 percent, 

peak to trough output declines averaging 9 percent, and an increase in the value of government 

debt rising to 86 percent of GDP in the major post-World War II episodes. 

While detailed data are limited to more recent periods across the Third and Fourth 

Industrial Revoltions, three empirical regularities stand out. Figure 5 provides a view of tangible 

and intangible capital investment. As shown across the figure’s bottom row, capital deepening 

 
5 See Reinhart and Rogoff. 2009. Box 16.1, pp. 260–261. 
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increases more rapidly during the Third Industrial Revolution deployment period during which 

the stock of capital grew at a 2.0 percent annual rate. Growth slowed in the Fourth Industrial 

Revolution to 1.2 percent annual rate during the installation period. While the technology irrupts 

and eventually creates a frenzy, capital investment slows as the capital stock deployed in the 

earlier era continues to provide service and generate income. In the current period, capital 

deepening has failed, thus far, to fully capture the recovery experienced in previous deployment 

periods. The lag in capital deepening is one manifestation of what has been labeled “secular 

stagnation” (Summers 2014). 

Figure 6 shows the well-known productivity slowdown across the table’s bottom row. 

The robust 2.6 percent productivity growth in the Third Industrial Revolution deployment 

slowed to 2.0 percent per year in the installation period in the Fourth Industrial Revolution. In 

the current period, productivity growth has slowed even further to an annual rate of 0.9 percent. 

Again, another sign of failure of the deployment period to launch. 

Consistent with Figure 6, recent work by Gordon and Sayed (2022) show that their 

examination of historic data suggests there were three eras of cyclical productivity growth 

changes between 1950 and 2019. Gordon and Sayed write: 

The first [era] extending from 1950 to 1985 marks the regular procyclical 

response of roughly 0.3 in virtually every expansion and recession episode. The 

second [era] covering 1986-2006 witnessed a more muted and inconsistent 

procyclical response.  And the third [era] from 2007 to 2019 combined the strong 

excess adjustment of hours during the 2008-09 recession with the reappearance of 

a regular procyclical productivity response after 2009. (Gordon and Sayed 2022, 

p. 16) 
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Figure 7 also shows that as a result of the dramatic slowing of investment spending 

growth in the 1930s, the capital stock aged. From an average age of 15.3 years in 1925, the stock 

grew progressively older to 20.6 years in 1945 and 1946. Clearly, some of the aging could have 

been a result of neglect while production was focused on the 1941–1945 war effort. However, 

the average age of the capital stock had already reached 19.5 years in 1940 and 1941 with only 

one added year of age over the ensuing five years. 

Compared with the prewar capital stock age of 19.5 years in 1940, shown in Figure 7, the 

16.3-year age in 2020 is largely accounted for by the shift in the composition of capital 

investment spending, which reflects the increased importance of equipment and IPP in 2020.  

Figure 7 shows the trend in the age of nonresidential net capital investment with the 1940 

weights applied. In the absence of the composition shift, the 2020 average capital age would 

have been 18.9 years, only slightly below its 1940 value. Controlling for the compositional shift, 
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the capital stock in 2020 is about as aged as it was in 1940. While Gordon and Sayed (2022) find 

some evidence of capital deepening in 2017-2019-consistent with the deployment period of the 

Fourth Industrial Revolution-such investment is yet to be reflected in the age of the capital stock. 

Finally, not only is capital long lived, but technology cycles are lengthy as well. Intel was 

launched in 1971. However, it was not until the mid-1990s when microprocessor technology 

provided meaningful economic value, as reflected in increased productivity growth (Jorgenson 

and Stiroh 2000 and Gordon and Sayed 2022). By 1995, microprocessor innovation resulted in 

the cost per million computations (CMC) falling by six orders of magnitude over a quarter of a 

century (See Figure 8). An additional 20 years passed, with additional CMC reduction of two 

further orders of magnitude, before a GPT was available and the global cloud infrastructure was 

deployed at scale. The realization of a global technology revolution required mobile device 

innovation as well as a fundamental redesign of the worldwide computing and communication 

infrastructure across 40 years. To revolutionize economic value, the steam engine required 

approximately 80 years, while electric power and mass production each required approximately 

40 years (Crafts 2004 and David 1990). 
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III. Knowledge Transfer and Labor Income Share 

Industrial revolutions are characterized by investment and depreciation of tangible and 

intangible capital that embodies new and legacy technology whose ability to add value is 

dependent on creative destruction across business organizations, worker cohorts, and 

governments as new products and services are launched, new business models are created, and 

existing business processes are transformed. 

Two critical features of industrial revolutions are—(1) knowledge transfers and 

absorptive capacity and (2) changing capital and labor income shares with a shifting income 

distribution. Both differ fundamentally over the course of each industrial revolution and define 

the dynamics of systemic change. In the installation period of each industrial revolution, high 

productivity, leading-edge firms absorb knowledge effectively and find new applications for the 

new technology, resulting in market share gains, increased industry concentration, and reduced 

labor expense as a percent of revenue. Income is skewed toward capital owners and away from 

labor. The high productivity, leading-edge firms are labeled superstar firms. But the star-lit 

nature of the leaders implies there are laggards. The laggards and the opportunities they offer for 

productivity improvement is highly variable and widely disbursed across industry firms. While 

the determinants of productivity are unsettled, worker engagement has received less than needed 

attention, especially in a services-driven economy. The contribution of workers to productivity 

growth and the conditions under which labor effort is automated or augmented remains a subject 

of debate. 

In the deployment era-in the aftermath of the financial crisis-cleansed balance sheets and 

available cash are positioned to invest in the now mature and inexpensive new technology with 

the replacement of then-aged tangible and intangible capital. However, even more intense 
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creative destruction produces fundamental change, establishing a new order, cutting across labor 

and product markets with widespread adoption of new business models, processes, products, and 

services. Because such deep and profound change is resisted by entrenched interests—wealth 

holders, business organizations, workers, and governments—often major external events such as 

wars, depressions, and pandemics are required to cause new social and economic regimes to 

emerge. However, if creative destruction and the ensuing regime transformation are successful, 

robust output and productivity growth are expected-eventually-in a low inflation environment. 

If organizations are to fully benefit from the renewal of tangible and intangible capital, an 

ability to absorb knowledge is critical. Industry productivity leaders, by their nature and 

organizational culture, understand how to learn, transform, and grow. The absorptive capacity of 

organizations and the rate of knowledge diffusion—“two sides of the same coin”—depend on the 

nature and extent of capital and labor interaction. The diffusion of knowledge only creates 

economic value if organizations can absorb such knowledge and create productive 

improvements. Indeed, successful creative destruction—launching innovation, creating new 

firms, and finding new job roles—requires knowledge diffusion and absorptive capacity. 

Figure 9 provides a view of business establishment formation from 1948 to 2018. After 

an increasing business formation rate from 1960 to 1978, business formation declined from 1980 

to 2010. The 1948–1980 period approximately coincides with the years that have been identified 

as the deployment period of the Third Industrial Revolution. With the fossil-fuel, mass 

production era having reached maturity and tangible and intangible capital in a period of rapid 

accumulation, including government sector infrastructure and intellectual capital, business 

formation began a period of rapid increase. Interestingly, more than a decade was required for 

the formation rate improvement to begin. By the later portion of the period, business formation  
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accelerated to a very high rate. Once underway, the formation rate remained elevated for three 

decades. 

By contrast, the 1980–2018 period approximately aligns with the installation period of 

the Fourth Industrial Revolution. With the aging capital of the previous period and the nascent 

technology of the new electronics and IT era, business formation slowed, industry concentration 

increased. The leadership of IBM in the computer industry and later by Intel, Corp. in the 

semiconductor industry are examples of concentration in the newly formed technology industry. 

Eventually, of course, newly formed highly innovative industries, such as keyword search, social 

media, and browser software, also showed new business formation and high concentration. 

Autor, Dorn, Katz, Patterson, and Reenen (2020) find industries that have become more 

concentrated are those with faster productivity growth. Each industry’s productivity-leading 

firms—superstar firms—are not only more innovative but also are larger firms and getting larger 
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while realizing higher markups. As a result, those industries with increased product market 

concentration, more rapid productivity growth, and enhanced innovation have experienced larger 

declines in the labor share. Innovation combined with economies of scale has reduced labor 

expense as a percent of revenue. Because labor shares tend to be lower in larger firms, 

reallocation of market share to larger firms has tended to depress aggregate labor share. 

Autor et al. find there has been a “rise in sales concentration … across the vast bulk of 

the U.S. private sector, reflecting the increased specialization of leading firms on core 

competencies” (p. 650). In labeling such industry-leading, high-productivity firms “superstar 

firms,” Autor et. al. call to mind the current small set of well-known technology firms. However, 

their data cover 676 four-digit industries, suggesting that the phenomena are widespread across 

industry sectors. To the extent that the advent of new technology increases automation, lowers 

marginal costs, and increases markups, labor’s income share rises at the firm level among 

productivity-leading firms (See Figure 10). 

The existence of superstar firms as shown by Autor et al. follows a growing body of 

research and scholarship that has established “enormous and persistent productivity differences 

across producers even within naturally defined industries” (Syverson 2011). These differences 

are not fleeting with higher productivity firms more likely to survive over long periods (Foster, 

Haltiwanger, and Syverson 2008). While such persistence is often attributed to technological 

diffusion, the literature suggests that productivity differentials appear to be the result of 

investments in intangible capital—the business know-how embodied in capabilities across 

organizations. 

While determinants of productivity at the firm level remain unsettled, much is known 

about a broad set of influences. Building on a growing body of work, Bloom, Brynjolfsson,  
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Foster, Jarmin, Patnaik, Saporta, and Van Reenen (2019) find enormous dispersion of 

management practices across plants, with 40 percent of the variation across plants within the 

same firm. Talent and human resource management, more generally, have also been shown to 

impact productivity. While establishing causality for the role of talent and management practices 

remains a difficult issue, Fleming (2022) shows with the increased importance of services sectors 

in the global economy, there is a growing literature identifying the casual influences on firm-

level productivity improvement.  

Further, the growth of the services sectors alters firm-level economics, in which worker 

skill and commitment, intangible assets, and information technology rise in importance in 

comparison to the economics of manufacturing and agriculture. In services sectors, above-

average productivity growth is achieved with high rates of repeat business that generate high-

profit margins, requiring strong customer loyalty and sustained customer relationships. The 
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important insight is that customer loyalty is earned with high internal service quality achieved 

with a focus on job and workplace design, employee selection and development, employee 

rewards and recognition, and the technology employees utilize to serve customers. The skill, 

quality, and satisfaction of the workforce, often referred to as worker engagement, is a critical 

element of service success. As a result, the economics of services requires innovative 

measurement. 

With an aged capital stock, limited knowledge diffusion and absorptive capacity, and 

declining labor income share, the deployment era of the Fourth Industrial Revolution is not 

assured to deliver robust and rapid growth, capital deepening, and improved living standards. 

Clearly, the future is uncertain. A breakthrough is not guaranteed. The concern is well founded. 

Both in the United States and Europe, periods following economic shocks have often 

experienced limited growth. In the United States, between 2007 and 2020 after the Great 

Recession and financial crisis, U.S. real GDP growth averaged only 1.3 percent per year. The 

slowdown is often referred to as hysteresis—the persistence of negative effects after the initial 

cause is removed (Summers 2014). 

As Landes (1969) and Lazonick (1998) observed, the success of each industrial 

revolution depends, in part, on the interest and ability of workers and businesses to transform 

behavior and engage in creative destruction. For example, as the Second Industrial Revolution 

moved from installation to deployment in the last quarter of the 19th century, American, German, 

and Swiss firms moved rapidly to adopt the new technology and make the needed capital 

investments, while British business leaders and workers guarded the status quo, living off 

existing income-producing capital.  
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Similarly, the UK, Germany, and U.S. transformation from the installation period to the 

deployment period of the Third Industrial Revolution in the second quarter of the 20th century, as 

Landes (1969) and Gordon (2016) observed, was in part a result of the shock to economic 

activity in support of the war effort; an unwillingness to return to old, prewar ways; the 

economic rescue after the war; and substantial infrastructure spending as part of the strategic 

competition with the Soviet Union. Now, if the global economy, especially the developed world, 

is to move into the deployment phase of the Fourth Industrial Revolution, the shock and 

dislocation of the 1990s dot-com bubble and the 2008–2009 Great Recession and financial crisis 

appears to have been insufficient to create the needed pressure for change. However, much as the 

conclusion of the Second World War appears to have created circumstances for the Third 

Industrial Revolution’s deployment period, perhaps the combined effect of the Great Recession 

and the 2020–2021 pandemic will create conditions for the Fourth Industrial Revolution’s 

deployment period. 

Over recent decades, a wide array of fiscal, tax, and monetary policies have been 

deployed to support growth, but unsatisfactory outcomes remain. While finding the best and 

most effective government policy and programs configurations is important, it seems unlikely 

there is a silver bullet yet to be found. More likely, a new social contract is required in which 

workers, business leaders, and elected public officials can come to together, as a result of the 

pressure and dislocation from unsatisfactory economic outcomes and the 2020–2021 pandemic 

(See Fleming 2022, Chapter 6). A new social psychology, recovering from the recent decade’s 

trauma, is very likely necessary. While pessimism abounds, rising expectations, high hopes, and 

anticipation of a brighter future ahead seem unrealistic. Nonetheless, it will be in the individual 

and collective interest of workers, businesses, and governments to transform economic activity, 
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if the the benefits of a period of more robust growth and a more equal distribution of incomes are 

to be realized. 
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IV. The Transformation of Measurement for the Period Ahead 

If the Fourth Industrial Revolution is to deliver social and economic benefits comparable 

to earlier periods, new measurement concepts, tools, and capabilities will be required, just as 

other aspects of business and work life will be required to transform. It is not coincidental amid 

the Third Industrial Revolution that the pain wrought by the Great Depression launched a historic 

effort to create an entirely new measurement system. The 3rd and 15th Nobel Prizes in economic 

science were awarded largely for contributions to the development of national income accounts - 

in 1969 to Simon Kuznets for work in the U.S. and in 1984 to Richard Stone for work in the 

U.K. While many innovations and improvements have been introduced over the years, the early 

design remains the foundation of national income measurement (See Landefeld, Seskin and 

Fraumeni 2008).  

 

IV.1.  Recent Measurement Innovations 

Recognizing that radical change must occur to technology, economic activity, and ways 

of working for the benefits of industrial revolution to be realized, measurement transformation is 

needed as well. However, several measurement innovations have already occurred and have 

taken hold to some degree. 

 

Intangible Capital 

The work of Carol Corrado, Jonathan Haskel, and others has provided detailed 

development of both the measurement of intangible capital investment spending and the 

economics of such assets, including knowledge based-asset investment, the relationship of 

intangible assets to growth theory, growth accounting expansion, and the manner in which 
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growth and ownership of intangible assets alters the competitive environment across firms (See 

Corrado, Haskel, Jona-Lasinio, and Iommi 2022).6  

Importantly in the context of the Fourth Industrial Revolution, Crouzet, Eberly, Eisfeldt 

and Papanikolauo (2022) write: 

The key finding is that rents associated with intangible assets have contributed to 

a sharply rising share in the growth of total enterprise value of US businesses 

since the early 1990s, accounting for approximately 15 percent in the mid-1980s 

and to up to 40 percent in 2015, depending on how broadly intangibles are 

measured. (Crouzet, Eberly, Eisfeldt and Papanikolauo 2022, p. 48). 

 

In related work, Crouzet and Eberly (2020) find that tangible capital investment has 

responded to (1) earned excess profit—rents earned by tangible capital, (2) the value of 

intangible capital, and (3) the interaction between the two. However, when Crouzet and Eberly 

expand the definition of intangibles to include research, development, organizational capital, 

innovation, and transformation, the combined contribution of growth in the intangible capital 

stock and rents generated by intangible capital increases to about two-thirds. Crouzet and 

Eberly’s work suggests that the growth of investment has become much more dependent on the 

availability of a skilled workforce and somewhat less dependent on the cost of physical capital, 

even in a low interest rate environment. One implication of Crouzet and Eberly’s work is that the 

pressure on capital owners to share rents with a skilled workforce might contribute to slower 

investment spending growth. 

 

 
6 The Journal of Economic Perspective, Summer 2022, published an intangible capital symposium. 
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Income Distribution 

The important role played by changing capital and labor income shares over the course of 

each industrial revolution point to the obvious need for income distribution data. Two decades of 

work by Anthony Atkinson, Thomas Piketty and Emmanuel Saez, as is well known, has 

provided detailed data. Indeed, in a recent innovation, high frequency data have recently 

appeared. Blanchet, Saez, and Zucman (2022) provide quarterly estimates of economic group by 

income groups, finding in the post-pandemic period all income groups recovered to pre-crisis 

pretax income levels within 20 months of the March 2020 pandemic onset. While employment 

resumption primarily drove the recovery, wage gains at the bottom of the distribution were 

significant as labor markets tightened. Including taxes and cash transfers, real disposable income 

for the bottom 50% was 20% higher in 2021 than in 2019 but fell in the first half of 2022 as 

fiscal measures receded. 

 

IV.2.  Tools in Early Development 

The ubiquitous availability internet service and the world-wide-web as well as the near 

universal digitization of information has set the stage of a continuing expansion of the global 

cloud computing infrastructure and the growing adoption of machine learning, deep-learning, 

and neutral network models. These information technology and artificial intelligence capabilities 

raise a variety of measurement questions and opportunities. While not intended to be 

comprehensive, here is survey of a few in the early stages of development - the value of new and 

free goods, the use of web-based search to estimate and predict economic activity, the integration 

of administrative and survey data, and the value of data. 
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Brynjolfsson, Collis, Diewert, Eggers, and Fox (2019) assert that the welfare 

contributions of the digital economy, characterized by the proliferation of new and free goods – 

such as online search, email, social networks, and retail banking - are not well-measured in the 

national accounts. Consequently, Brynjolfsson et. al. have introduced a new metric, GDP-B, 

which quantifies benefits, rather than costs. Two illustrations are considered – Facebook and 

smart phone cameras. With the use of incentive compatible choice experiments, the welfare 

gains from Facebook, for example, would have added between 0.05 and 0.11 percentage points 

to GDP-B growth per year in the US. 

Hal Varian in a series of exercises shows the ability of online search data to provide 

estimates of the unemployment rate and initial claims for unemployment benefits. Choi and 

Varian (2019) show that Google Trends data can help predict initial claims for unemployment 

benefits in the U.S. Choi and Varian also find, using Google Trends, significant improvements in 

forecasting accuracy for German and Israeli unemployment data. 

Koenecke and Varian observe increasing volumes of data and analytics produced with 

firm-level data, which is sensitive, proprietary, or private. To address the resulting 

reproducibility issues, Koenecke and Varian propose researchers release synthetic datasets based 

on true data, allowing external parties to replicate methodology. Koenecke and Varian explore 

synthetic data generation for economic analyses. 

Despite these recent advances, the use of large-scale digitized information for the purpose 

of estimating prices and quantities by national statistical agencies to improve economic statistics 

remains in an early stage of development. In the U.S., statistical agencies have begun to make 

use of such data to augment traditional data sources with an opportunity to redesign the 

underlying architecture of official statistics. In March 2019, the NBER Conference on Income 
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and Wealth explored progress in the use of large-scale digitized information and the challenges 

remaining. Abraham, Jarmin, Moyer, and Shapiro (2022) document the conference and find that 

the use of large-scale digitized information is “ripe” for incorporation into the production of 

official statistics. However, much “hard work and significant investment is necessary”. 

Notwithstanding the challenges faced by national income accountants, large-scale 

digitized information is finding new applications as unstructured text data are converted to 

structure data. As outlined in Section II, Kelly et al. (2021) use natural language processing 

(NLP) to define breakthrough innovations as distinct improvements in the technological frontier 

that become the foundation on which subsequent innovations are built. They develop “measures 

of textual similarity to quantify commonality in the topical content of each pair of patents.” 

Significant, high-quality patents whose content is novel and impactful on future patents are 

identified. As a “ground truth” data set, Kelly et al. identify major technological breakthroughs 

across the 19th and 20th centuries. The measures of patent significance, developed with the NLP 

patent citation method, perform substantially better than citation counts in identifying the 

“ground truth” of major technological breakthroughs (See Figure 4). Validation shows the 

relationship of the measures to market value. With novel contributions adopted by subsequent 

technologies, the measures are capturing the scientific value of a patent (see also Bloom, Hassan, 

Kalyani, Lerner, and Tahoun 2021). 

If the economic, productivity, and income distribution benefits of the Fourth Industrial 

Revolution are to be realized, understanding the interaction of technology and the labor market 

will be important. In the context of increased services sector activity, especially among SMBs, 

improved worker engagement is necessary. Workers and business leaders will need to transform 

their behavior and engage in creative destruction. To address worker engagement, a novel U.S. 
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program has been created over two decades. The Census Bureau’s Longitudinal Employer-

Household Dynamics (LEHD) program combining federal, state and Census Bureau data on 

employers and employees. As part of the program, states agree to share Unemployment 

Insurance earnings data and the Quarterly Census of Employment and Wages (QCEW) data with 

the Census Bureau. The program combines these administrative data with additional 

administrative data and data from censuses and surveys. From these data, the program creates 

statistics on employment, earnings, and job flows at detailed levels of geography and industry 

and for different demographic groups. In addition, the program uses these data to create partially 

synthetic data on workers' residential patterns (See Abowd, Haltiwanger and Lane 2004 and 

Lane 2020).  

Finally, the nearly universal digitization of information has raised the question of the 

value of data. The valuation theory, process, and empirical estimates are in the early stages of 

development, addressing a nebulous issue. Indeed, a vast proportion of existing digitized 

information is sensitive, proprietary, and private. Led by the Laura Veldkamp, Farboodi, Singal, 

Veldkamp, and Venkateswaran, (2021) outline a model that provide sufficient statistics, making 

an investor’s private value of data measurable. Farboodi et. al. find, first, investor characteristics 

always matter. Second, despite the heterogeneity, market illiquidity is a significant determinant 

in how investors value data. When price moving trades occur, the value of data falls, especially 

for the investors who value data most. The high sensitivity of the value of data to market 

liquidity, for high value data, suggests that modest fluctuations in market liquidity can eviscerate 

the value of financial firms whose main asset is financial data. 
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IV.3.  Needs for the 21st Century 

 In the context of industrial revolution, there are behaviors whose progression is important 

but where data are either limited or non-existent. Such topics include new tasks, knowledge 

diffusion and absorptive capacity, transformation by enterprise size, and technology adoption. 

 

New Tasks 

Industrial revolutions bring with them new business models and new ways of working. In 

the second half of the 20th century and into the 21st century, Acemoglu and Restrepo have shown 

labor augmentation, approximately aligned with the deployment period of the Third Industrial 

Revolution, increased labor income. By contrast, Acemoglu and Restrepo also show labor 

automation, approximately aligned with the installation period of the Fourth Industrial 

Revolution, decreased labor income. The notion is that occupations are a collection of tasks with 

the expectation that tasks evolve with greater frequency than occupations and the pace of new 

task creation is much faster in the deployment period than in the installation period, increasing 

labor income share. While data on occupations are well established, data on tasks and a 

supporting taxonomy is limited.  

Recent work by Autor, Chin, Salomons and Seegmiller (2022), with 80 years of data, 

construct a novel database of new job titles linked both to U.S. Census microdata and to patent-

based measures of occupations’ exposure to labor-augmenting and labor-automating innovations. 

They find that most current employment is in job specialties introduced after 1940. However, 

new work creation has shifted from mid-wage production and clerical occupations over 1940–

1980, approximately the deployment period of the Third Industrial Revolution, to high-wage 

professional occupations and low-wage services since 1980, approximately the installation 
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period of the Fourth Industrial Revolution. New work appears in response to technology 

innovation that complement occupations and demand shocks that raise occupational demand. 

Conversely, innovation that automate tasks, or reduces occupational demand, slows new work 

emergence. Augmentation and automation innovation are positively correlated across 

occupations with augmentation increasing labor demand and automation decreasing labor 

demand.  

Autor et. al. find causality from new work augmentation and automation, spurred by 

breakthrough innovations two decades earlier, on occupational labor demand. Consistent with 

the view that the deployment period of the Fourth Industrial Revolution remains in an early 

stage, Autor et. al. suggest that demand-eroding effects of automation innovations have 

intensified in the last four decades while the demand-increasing effects of augmentation 

innovations have not. 

 

Knowledge Diffusion and Absorptive Capacity 

 By definition, knowledge diffusion is unobservable and difficult to measure. However, 

the advent of artificial intelligence, deep-learning models have the potential to create a service 

category which is currently unmeasured. In the existing national accounts framework, software 

and the associated deployment services that are licensed for on-premise use are included in 

spending for intellectual property. Spending for software-as-as-service (SaaS) is an intermediate 

purchase. While the appropriate treatment of SaaS spending can be debated, knowledge diffusion 

measures can be captured, in part, with as-a-service spending. In research at the MIT-IBM 
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Watson AI Lab, two recently compiled business cases demonstrate knowledge diffusion as-a-

service.7 

Building safe and reliable AI models for Autonomous Vehicles (AVs) requires enormous 

compute power and training data, along with skill, resource, and expertise at scale. Under such 

conditions, large platforms are emerging that pool data from multiple participants, aggregate 

demand to justify the large investments required, and enable new business models where AV 

software can be offered as-a-service to carmakers and fleet operators. NVIDIA is addressing 

these challenges with a service provide to auto manufacturers.  

 A common data platform across multiple customers allows for pooling data among 

several companies that increases the data available for training and enable greater model 

performance, particularly with edge cases. Hundreds of millions of driving scenarios can be 

simulated to supplement real-world data and help bootstrap models for silent on-street testing 

and iteration. NVIDIA is able to minimize the compute required by jointly training multiple 

tasks on a single model architecture. Once the full model is trained, the model is optimized for 

each task, without the need to re-train the model.  

Participating auto makers can either lease AV hardware to train their own models based 

on a larger dataset or use pre-trained AV models from NVIDIA. In either case, instead of making 

significant capital investments in hardware and development capability, the AV technology 

becomes a service and an operating expense with benefits from hardware and software 

improvement. The offering also represents the beginning of a new market dynamic. On one side 

are vertically integrated auto makers (e.g., Tesla), that co-design their software and hardware for 

more seamless experiences. On the other side are increasingly modularized auto makers who 

 
7 https://www.ibm.com/thought-leadership/institute-business-value/en-us/report/ai-examples 
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compete on the quality of their hardware and buy their software from centralized players such as 

NVIDIA. 

While the NVIDA offering is intended to service large enterprise buyers, more intriguing 

are similar offerings for small and medium businesses (SMBs) who often find large scale 

development projects unprofitable. Such limitations are increasingly true for machine-learning, 

particularly where the tasks being automated are perception-based with the use of image 

recognition. These applications can require significant data and compute resources to develop 

and maintain. Navtech identified an opportunity to bring advanced computer vision to individual 

diamond retailers across the globe, by creating a model and delivering it as-a-service. 

India alone has an estimated 300,000 diamond jewelry retailers. Many are smaller 

companies, with limited inventory capacity who typically increase their offerings through 

custom-made jewelry. Visual catalogs are an important element of the sales process. Each 

retailer maintains such a catalogue for their own inventory and supplements it with images of 

other jewelry as inspiration for customers looking for bespoke pieces. Digital catalogs remove 

physical catalog constraints but introduce other challenges. Staff compile images from various 

sources and categorize them manually into folders. The process is slow, prone to error, and 

results in only very high-level categorization. 

Computer vision systems that leverage deep learning to classify images improves speed 

and accuracy, but the reality is that they are out of reach for most retailers. As a result, Navtech 

built a computer vision system and offered it as-a-service. The system enables retailers to rapidly 

build large digital catalogs, classifying up to 100 images per minute at an accuracy of 90-93% 

for product category and style and 85-86% for diamond cut. The model is built with a relatively 

small data set of only 3000 labelled images for each jewelry item. Navtech performs post-
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processing, where the results of one model – style - are used to increase the confidence of 

predictions for another model - diamond cut. The service illustrates the cost-benefit tradeoffs of 

deep learning, where some use cases can only be enabled by larger, centralized providers with 

the ability to serve a broad market. Such systems, because they are delivered at scale, must be 

delivered as part of as-a-service architecture, underpinned by traditional cost-effective software 

development. 

 

Enterprise Size 

Small and Medium Businesses (SMBs) play an important role in value add, employment, 

and productivity (See Fleming 2022, Chapter 4). For example, Berlingeri, Calligaris and 

Criscuolo (2018) find that productivity and wages increase significantly with firm size in the 

manufacturing sector while the distribution is much flatter in the nonfinancial market services 

sector. However, wages increase with productivity in both the manufacturing and nonfinancial 

market services sector with the increase especially large in services firms. For the most 

productive manufacturing and nonfinancial market services firms – those above the 90th 

percentile – wages are generally higher in the services firms than in manufacturing firms. 

Further, if aggregate economic and productivity growth are expected to grow at a more robust 

rate in the future, SBMs will be required to contribute to the stronger growth environment. 

Surprisingly with SMBs providing a substantial proportion of employment across most 

developed nations, detailed, and regularly reported data by enterprise size are limited. As an 

illustration, the U.S. Bureau of Labor Statistics (BLS) publishes productivity data for the 

nonfarm business sector and the nonfinancial corporate sector, leaving the nonfinancial 

noncorporate sector and the financial sector unreported. It is in the nonfinancial noncorporate  
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Figure 11 

 
Source: Author’s Calculations 
 

and the financial sectors where many SMBs are found. In the second quarter of 2022, 

productivity in the nonfarm business sector fell 4.1% from a year earlier and productivity in the  

nonfinancial corporate sector fell 0.7% from a year earlier. From flow-of-funds data, the 

nonfinancial corporate sector delivers 65% of private nonfarm business sector value add, 

implying that productivity in the nonfinancial noncorporate and financial sectors fell 10.5% from 

a year earlier. While such a calculation is a poor substitute for a well-developed data program, 

the estimate – consistent with Figure 11 – increased productivity growth volatility in the sector, 

perhaps reflecting a time lag in knowledge diffusion. 
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AI Technology Adoption 

Finally, along with the transformation of labor markets and business models and process 

of enterprises of all sizes, the adoption of artificial technology adoption will be an important 

element of growth prospects. While data are limited early work by the U.S. Census Bureau 

provides some early insight. 

Zolas, Kroff, Brynjolfsson, McElheran, Beede, Buffington, Goldschlag, Foster, and 

Dinlersoz (2020) provide the most extensive estimate of AI technology usage. They found in 

2017, across AI-related technologies, for all firms in the U.S. the aggregate adoption rate was 6.6 

percent.8 Zolas et al. introduced a survey module that complemented and expanded research on 

the causes and consequences of advanced technology adoption. The 2018 Annual Business 

Survey (ABS), conducted by the U.S. Census Bureau in partnership with the National Science 

Foundation, provided a comprehensive view of advanced tech-nology diffusion among U.S. 

firms. The technologies included were AI, cloud computing, and the digitization of business 

information. The survey was a large, nationally representative sample of over 570,000 respond-

ing firms covering all private, nonfarm sectors of the economy. 

Zolas et al. also finds adoption was skewed. While the heaviest concentration was among 

a small subset of older and larger firms, an increasing number of new, young, born-on-the-web, 

still quite small firms, are also adopters. The smallest firms had the lowest use rates. Even among 

firms of the same age, the usage rates tended to increase with size. For small firms (less than 50 

employees) usage rates tended to decline with age with the oldest small firms having the lowest 

adoption rates. Overall, size was an important predictor of AI technology use and the connection 

between age and the use of these technologies depended on size. Scale appeared to be important 

 
8 Unpublished estimates provided by a global technology provider found 4 per-cent of global large enterprises were 
operating AI solutions in 2016, 5 percent were operating such solutions in 2018, and 9 percent in 2020. 
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for AI usage, likely due to requirements for large quantities of data, copious computing power, 

experienced software developers, and skilled data scientists fully exploiting AI capabilities. 

Cloud services adoption displayed modest adoption in 2017, with a large share of firms 

hosting at least one IT function in the cloud. But cloud usage was significantly lower than the 

adoption rates of digital business information, which is nearly universal. Zolas et al. also found 

that technology adoption exhibits a hierarchical pattern, with the most-sophisticated technologies 

adopted most often only when more-basic applications were as well. For instance, digitization of 

business information was very widely adopted. The vast majority of firms who utilize the cloud 

for their IT services also digitize their information. Similarly, the vast majority of firms that 

adopt at least one AI technology, almost always purchase cloud services. 
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V.  Conclusion 

The deployment era of the Fourth Industrial Revolution is not assured to deliver robust 

and rapid growth, capital deepening, and improved living standards. Clearly, the future is 

uncertain. A breakthrough is not guaranteed. If robust and rapid growth is forthcoming, it is 

likely that economic, social, and political transformation is required. Economic and social 

measurement will not escape the transformation. 

For the United States, United Kingdom, and other developed nations, benefit from a 

period of stronger economic and productivity growth with a more equal distribution of incomes 

will require a new social contract among workers, business leaders, and government officials, 

both elected and appointed. Tradition and culture are important, but the willingness of 

productivity-lagging but surviving businesses to embrace lower-cost technology that will 

continue to be easier to deploy will be necessary. Likewise, a substantial proportion of the 

workforce will also need to be willing to transform job roles and take on new tasks. Government 

leaders will need to show a willingness to comprise and adapt to the new economic environment. 

Political leaders will need to be willing to compromise, recognize the importance of new 

measurement programs – along with many other – and reallocate funding as necessary. 
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